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LETTER TO THE EDITOR 

Systems with logarithmic specific heat: finite-size scaling 

Vladimir Privmant and Joseph RudnickS 
t Department of Physics, Clarkson University, Potsdam, N Y  13676, USA 

Department of Physics, University of California, Los Angeles, CA 90024, USA 

Received 22 September 1986 

Abstract. A detailed study is presented of the finite-size scaling in systems with vanishing 
critical exponent a, which usually have logarithmic specific heat singularity. The appropri- 
ate form of the finite-size hyperuniversality is established. Recent results on complex 
temperature plane zeros of the partition function are extended to the a = 0 case. 

We develop a systematic formulation of the finite-size scaling theory for systems with 
vanishing specific heat exponent a. The two-dimensional king model is the most 
notable example of the logarithmic specific heat divergence as T +  T,. Based on 
Onsager’s ( 1944) solution, explicit calculations of the specific heat finite-size scaling 
behaviour have been reported by Ferdinand and Fisher (1969) and by Kleban and 
Akinci (1983). However, a more general scaling formulation is called for, following 
several recent developments. Firstly, it is interesting to explore how the hyperuniver- 
sality notions (Privman and Fisher 1984) in the finite-size scaling, fit with the emergence 
of logarithms as a + 0. Indeed, a property of conformal invariance which is even 
stronger than hyperuniversality hyperscaling, holds for the two-dimensional king 
model (see a review by Cardy (1986) for details). Our analysis will actually apply to 
any dimension below the upper marginal for finite systems of fixed shape (while the 
volume, V, may vary) and with periodic boundary conditions. Blote and Nightingale 
(1982) discussed emergence of logarithms in finite systems, within the real space RG 

derivation of the finite-size scaling of the free energy. Fisher (1971) formulated a 
phenomenological finite-size scaling ansatz for the ‘logarithmic’ case. 

Recent results by Glasser et a1 (1986) for the partition function zeros in the complex 
temperature plane are the second motivation for our study. Their explicit formulae 
contain combinations of bulk amplitudes (and a) which require delicate limiting 
procedures as a + 0, and detailed understanding of the finite-size scaling in this limit. 
We extend the Glasser et a1 formalism to the logarithmic case. Previous studies of the 
complex temperature zeros for a = 0 systems concentrated on their locus and density 
in the d = 2 Ising model (Fisher 1965, Brascamp and Kunz 1974, Abe and Katsura 
1970). However, Abe (1967) considered a more general asymmetric-background 
logarithmic case. 

It is convenient to formulate our discussion in terms of the limit a + 0. The finite-size 
scaling relation for the free energy density, measured in units of kT, takes the form 

f( t, V )  = bo+ 6, t + bz t2  + V - ’  Y (  : ( A V ) ’ I d ” ;  . . .) (1 )  

where t = ( T  - Tc)/ T,. In the scaling term, A is the only non-universal parameter 
(Privman and Fisher 1984). The undisplayed arguments are system shape ratios. The 
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power series in t includes the first few of the bulk analytic background contributions; 
this last identification has been established only for systems with periodic boundary 
conditions (BrCzin 1982). The scaling function Y ( T ) ,  with 

T =  t (AV)”dY (2) 

Y = ( A , / A ) ~ T ~ ~ ” .  (3) 

f,( t ,  03) = bo + b, t + b2r2 + A,/ t I d ”  (4) 

can be expanded in powers of 7 for small 17). For T - ,  f03  however, we have 

This limit reproduces the bulk behaviour 

where * denotes the free energy density for t 2 0, respectively. (Note that dv = 2 - a 
here.) Finally, a convenient normalisation in ( 1 )  is provided by the choice (Glasser 
et al 1986) 

( 5 )  

The limit a -, 0 in the bulk system, and the emergence of the t 2  In( t C 2 )  contribution 
to the free energy, are well understood both in the field theoretical (Wegner 1972) and 
real space (Nightingale and t’Hooft (1974) and references therein) RG formalisms. A 
recent general scaling discussion is due to Chase and Kaufman (1986). In the limit, 
the amplitudes A, and b2 have poles 

A = [A: +A! - 2A+A- COS( ~ a ) ] ” ~ .  

b2=-(2a/a)+Bz (6) 

A, = ( 2 a / a )  + B ,  a s 0  ( 7 )  

bo= Bo and b, = B,  (8) 

but 

with corrections (in (6)-(8)) of O ( a ) .  Small-a expansion of (4) leads to the limiting 
form 

f,( t ,  03) = Eo+ BI t + ( B2 + B , ) t 2  + at2 in( t - 2 ) .  

x,(T)= Y(T)-(A*/A)lTld” (10) 

f( t, V )  = bo + b,  t + b, t 2  + A, I t I d ”  + V-’X,(  t ( A  V ) ’ l d v )  

(9) 

In the finite system case, we can formally separate the bulk singularity by defining 

(compare (3)). Then 

( 1 1 )  

but the new scaling functions X,( .r)  are no longer regular for small 171 which is the 
regime of strong finite-size effects. It is plausible to conjecture that the finite-size term 
in ( 1 1 )  has a smooth limit as a-0 .  Indeed, according to BrCzin (1982), restricting 
system size (which can be viewed as discretising momentum variables in the field 
theoretical RG formalism and thus effectively introducing an infrared cutoff) ‘commutes’ 
with the finite lattice spacing (ultraviolet cutoff) related regularisations. This feature 
is explicit in the real space RG (Blote and Nightingale 1982) and was also checked in 
the low-order &-expansion calculations by BrCzin and Zinn-Justin (1985) and by 
Rudnick et ul (1985). Now according to relations ( 5 )  and (7)  we have, in the a -, 0 limit, 

(12) A E [ ( B +  - B - ) 2  +  TU)^]"* 
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which is finite. In summary, we propose the following scaling for the a = 0 case: 

f( t, V )  = Bo+ B,t + ( B2+ B , ) t 2 +  at2 In( tC2) + V- 'X , (  t (AV) '12)  (13) 

with A given by (12). 
To proceed, let us define a universal parameter p via 

p E ( 1  - A + / A - ) / a .  (14) 

This quantity has been used in fitting experimental data in d = 3 :  see Chase and 
Kaufman (1986) for further discussion and literature. Indeed, p (  a )  has a smooth limit 

P = p ( a  =O) ( 1 5 )  

A+/A-  = 1 - P a  + 0 ( a 2 ) .  (16) 

P = ( B -  - B + ) / ( 2 a )  

which is the linear coefficient in the expansion 

By (7),  we have 

(17) 

and so 

A/  a = 2( P 2  + T' ) ' '~ .  
The ratio a / A  is then universal. By inspection of the defining relations ( 5 )  and (7),  
one concludes that B J A  (and A J A )  are also universal. In terms of T =  t(AV)'12, 
we now represent the logarithmic term in (13) as 

at2 ln(t-2) = at2 In(AV)+ V - ' ( U / A ) T ~  ln(T-2). (19) 

The B,t2 term in (13) can also be represented in terms of T as V - ' ( B , / A ) T ~ .  We can 
absorb the terms with the universal coefficients a / A  and BJA in the definition of 
the finite-size scaling function. Relation (13) is replaced by 

f( t, V )  = Bo + B, t + [ a  In( A V )  + B2] t2  + V-'  W (  t ( A  V) '") .  (20) 

The combined scaling function W ( T )  must be regular at the origin similar to Y ( T )  in 
( l ) ,  since the other leading terms in (20) have no explicit singularities at t = 0. The 
scaling term in (20) is shape dependent; it has a hyperuniversal form (Privman and 
Fisher 1984) with a single non-universal amplitude. Specifically, the W(0)  V-' term 
in the free energy at T, has a universal (shape-dependent) amplitude W(0) .  The large-T 
behaviour of W ( T )  is given by 

W ( T ) = ( U / A ) T 2  ln(7-*)+(B*/A)T2+0(T2) (21) 
for r-,*oo, respectively. Finally, note that we did not consider corrections to the 
leading scalingplus-background terms in relation (20): see Ferdinand and Fisher 
(1969) and Kleban and Akinci (1983) for explicit results for the d = 2 Ising model. 
These authors studied specific heat which is given essentially by the second- T derivative 
of (20). Some further results on corrections were obtained by Barber (1983). 

The finite-size relation (20) involves the non-universal amplitudes Bo, E,, B2 and 
a and the universal scaling function W ( r ) .  Three other amplitudes entering in (20) 
and (21) are B, and A which are related universally to a. The form (20) is applicable 
in the case of a = 0 (no logarithmic divergence) since the metric factor A is well defined 
(see (12)). It is, however, obvious that one can redefine the scaling function W to 
have a as a metric factor (provided a f 0), which means having both ( A V )  dependences 
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in (20) replaced by ( a V )  dependences. Our formulation can also be extended to 
higher-order logarithmic anomalies appearing at a = -1, -2 , .  . . (see Chase and Kauf- 
man (1986) and references therein). 

Turning to the complex temperature zeros of the partition function, let n label the 
Re(t)> 0 zeros: n = 1, 2, 3 , .  . . , O ( A V ) .  Note that the dimensionless product AV is 
of the order of number of particles in a system. For 1 << n << AV an explicit asymptotic 
expression for the nth zero, t,, can be derived from finite-size scaling relations (see 
Glasser et al 1986). Their analysis can be extended to the logarithmic case by using 
relations (20), (21), etc. We will not report the details but list central results, since 
they all can be obtained by the a + 0 limit of the a # 0 relations. Firstly, all the n << AV 
zeros scale according to 

t ,  = T, , (Av) -"~  (22) 

where A is given by (18), while T,, are the roots of 

exp[ - W( 7)] = 0. (23) 

For n >> 1, we have the asymptotic relation 

The angle 4 defines the slope of the asymptotic accumulation line of zeros, with respect 
to the negative-r axis. For general a, it is given by 

t a n [ ( 2 - a ) 4 ]  =[cos( .rra)-A-/A+]/s in( .rra)  (25) 

(see Itzykson et a1 1983). The a + 0 limit of (25) is straightforward (as opposed to 
that for the amplitude A ) :  

tan(24)  = -P/.rr. (26) 

An equivalent equation was derived by Abe (1967); note, however, that his range of 
angle values (his equation (3.8)) is incorrect. Typically, f.rr 4 c--fr. For the symmetric- 
background logarithmic singularity, E ,  = E - ,  as in the d = 2 Ising model, the scaling 
predictions (22), (24)-(26) and (12) can be summarised in the simple expression 

t ,  = = i ( n / ( a V ) ) " 2  for E+ = E - .  (27) 

In summary, we have presented a systematic formulation of the finite-size scaling 
behaviour for systems with logarithmic specific heat ( a  = 0), with restriction to periodic 
boundary conditions. Our results include identification of the hyperuniversal scaling 
properties for this case, and study of the complex temperature zeros. 
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